Operation of Spark Plug

 OPERATIONS OF SPARK PLUGS 

  Components of a typical, four stroke cycle, DOHC piston engine. (E) Exhaust camshaft, (I) Intake camshaft, (S) Spark plug, (V) Valves, (P) Piston, (R) Connecting rod, (C) Crankshaft, (W) Water jacket for coolant flow.The plug is connected to the high voltage generated by an ignition coil or magneto. As the electrons flow from the coil, a voltage difference develops between the center electrode and side electrode. No current can flow because the fuel and air in the gap is an insulator, but as the voltage rises further, it begins to change the structure of the gases between the electrodes. Once the voltage exceeds the dielectric strength of the gases, the gases become ionized. The ionized gas becomes a conductor and allow electrons to flow across the gap. Spark plugs usually require voltage in excess of 20,000 volts to 'fire' properly.

As the current of electrons surges across the gap, it raises the temperature of the spark channel to 60,000 K. The intense heat in the spark channel causes the ionized gas to expand very quickly, like a small explosion. This is the "click" heard when observing a spark, similar to lightning and thunder.

The heat and pressure force the gases to react with each other, and at the end of the spark event there should be a small ball of fire in the spark gap as the gases burn on their own. The size of this fireball or kernel depends on the exact composition of the mixture between the electrodes and the level of combustion chamber turbulence at the time of the spark. A small kernel will make the engine run as though the ignition timing was retarded, and a large one as though the timing was advanced.